트랜스포머2 Transformer를 이해하고 구현해보자! (2) 이전글 : Transformer를 이해하고 구현해보자! (1) 다음글 : Transformer를 이용한 번역모델 구축 저번 포스팅에서는 Transformer의 구성요소인 Positional Encoding, Multi-Head Attention, LayerNorm, Feed-Forward에 대해 알아보고 구현해보았습니다. 이번 포스팅에서는 저번 포스팅에 이어 Encoder와 Decoder를 구현한 뒤, 전체 모델인 Transformer를 구현해보겠습니다. 사실 구현에 필요한 핵심적인 부분은 모두 저번 포스트에서 다루었기 때문에 이번 포스트에서는 전에 구현한 클래스들을 이어붙이는 작업이 주를 이룹니다. +) 다음 포스팅에서는 이번에 구현한 Transformer 모델을 이용하여 한-영 번역기 모델도 학습을 .. 2022. 1. 21. Transformer를 이해하고 구현해보자! (1) 다음 글 : Transformer를 이해하고 구현해보자! (2)이번 포스트에서는 Transformer의 시초(?)인 'Attention is all you need' 라는 논문에서 나온 모델에 대해 나름대로 이해한 내용을 정리하며 그 내용을 토대로 Pytorch로 구현해보고자 합니다.Transformer는 크게 Encoder(왼쪽) 와 Decoder(오른쪽) 으로 구성되어 있습니다. 이번 포스트에서는 Encoder와 Decoder에서 모두 사용하는 Positional Encoding, Multi-Head Attention, Add&Norm 그리고 Feed-Forward에 대해 설명하며, 다음 포스트에서는 본격적으로 Encoder layer와 Decoder Layer를 정의하고 학습까지 진행해보도록 하곘습.. 2021. 10. 25. 이전 1 다음